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Probability Distributions
for Weapon System Effectiveness

Abstract

I derive the probability density functions and cumulative
distribution functions describing the single shot probability of
survival, SSPS, for a given weapon system and target, as a function of
the underlying random variables weapon radius, WR, and circular
error probable, CEP. I derive explicit analytical formulas when WR
and CEP are uniformly distributed and numerically compute results
when WR is unform and CEP is distributed as X°. I illustrate some
properties of the SSPS distributions and how these results can apply

to weapon effectiveness studies.

1. Motivation

The single shot probability of survival, which I denote here by s,
and its complement the single shot probability of kill, denoted here
by p, are key measures of weapon system effectiveness, given by
(1]

o)
]

s(uv) =[z] . (1)

p(u,v) =1-s(u,v) (2)



Here u is the weapon radius, which expresses how close to the target
the weapon must land to destroy the target and v is the circular
error probable, which measures how accurately the weapon system
delivers its weapon. Reference [1] gives more rigorous and precise
definitions of these quantities. (Traditonally, s,p,u, and v are denoted
SSPS, SSPK, WR and CEP respectively. Here and below we abbreviate
the notation where necessary to clarify the presentation.)
Calculations of u combine weapon effects phenomena with target
characteristics while calculations of v involve delivery system
characteristics, and the results for both often have unavoidable
uncertainties. Due to the uncertainties, studies must consider s for a
distribution of possible values of u and v and typically choose two
from a handful of common probability distributions for computation.
Hence s is a function of random variables and in principle is a
random variable with a distribution of its own, derivable from the
distributions of u and v.

Many studies require knowledge of the distribution of s 1) to
understand the relationship between means, quantiles and variances
of u and v and the means, quantiles, and variances of s (and p) 2) to
test hypotheses and goodness of fit of models in cases where input
data with considerable uncertainty has been used, and 3) to
estimate effects of changes in value of underlying parameters.
Treatments of this kind of problem range from Monte Carlo
simulation [2] to structured sampling from discretized distributions
[3]. Here we obtain cumulative distribution functions from
knowledge of the underlying distributions of WR and CEP and focus

on convenient estimates of confidence levels of the SSPS. By



providing ready estimates of confidence levels, these results
complement other approaches to SSPS estimation.

In Section 2 below I derive the probability density function (pdf)
and the cumulative distribution function (cdf) of s(u,v) defined as a

function of random variables u and v for the case in which u and v

<

are both distributed uniformly. Section 3 treats the case in which

N

is distributed as chi-square and u is distributed uniformly. Section
discusses the case in which v is distributed a chi-square and u

follows a general, possibly quasi-empirical distribution.

2. Pdf and cdf for u and v uniform.

Let u and v be independent and uniformly distributed, with pdfs

given by
fu(U)=1/Ru 0<ULSUSUH Ru=(UH_uL) (3)
= 0 elsewhere
f.(v)=1VR, O<v svsv, , R =(v,-v) (4)
=0 elsewhere.

Here, the subscripts H and L on u and v indicate the upper and lower
limits (High and Low) of those variables. @ The cdf of s(u,v) is given

by integrating the joint pdf of u and v over the range of (u,v) such

()
that 0< (%) <s namely [see 4 for a discussion of similar cases]
Hs) = ”f JUf (v)dudv - _[duf L(u) Jf (V) dv
2 0 v:s(u,v)ss

p (utv)

(uv) (3) ss 5) .



The integral over v can be rewritten as an integral over s by using

the inverse relation

v(y,s) =u (l_n_qg)_)"z

In(s) (6)

3/2

_u (Inr2)Y 'ds
d""zlnl(Jvz)( In(s) ) s

and noting that the relation between s and v is well behaved

everywhere. Then the integral for F(s) becomes

3/2 '
In(s’) ds
Hs) = 2In(1/2) Iduj‘ uf (Ut (V(us»[ln(wz)] s 7
The pdf for s is then given by
dF(s) 1 [ T e
fu(s) = Tgo” = 2mm)[mm)] foufu(u)fv(v(u,s))du )
Since u is uniform this becomes
1/ ints) -a/2 Y,
fels) =- 33 |n(1/2)s In(1/2)) Iu uf ,(v(u,s))du
L (9),
_ 1 1 In(s) 2 u(upper limit)
4R R, In(¥2) 3 \In(1/2) u(lower limit) (10)
with the implicit definition
1/2
f(viys)=vR,, VLSV(u,s)Eu(":—r“‘(’?";2 sV, (11

=0 elsewhere,

and the upper and lower limits are functions of s, depending on the



non-null intersection of (3) and (11); the result is the following.
F(s) and f(s) are described completely by the four parameters,
Uy, uL, vy, and vi. In particular, they define four values of s on the

interval [0,1]

s;=(3) s,=(3) (12)

There are two cases to consider, depending on which of u or v is

more uncertain:

VH uH
v, Su,

Case (a): L L (13)

In this case the range of the v (CEP) distribution is less than that
of the u distribution, the most interesting case in practice. Here we
have 515525835, = Box 1 gives the pdf and cdf (fg(s) and F(s)) for
case (a). Elementary integration of the pdf provides the cdf. The
median, mean, and variance can be calculated explicitly as well. The

median is found by noting that (13) requires the median, ssp, to be

in the interval S25S5=S3  Setting the cdf F(s), Box 1, to 1/2 yields



v

1/2 2 2
1 Yy In(s“) :l Vh —VL
5= s 50) =,:v_,._ (ln(1/2)) [ 2R R ]‘*‘ F(s,) (14)
solving for the median gives
= B e
S50 =(3) =(3) =(3) (15)

where the bracketing denotes the mean. Thus for the special case of

uniformly distributed u and v, the median of s is s evaluated at the
medians or the means, since the median and mean of the uniform
distribution are identical. The mean is found by integration,

(s)= fsfs(s)ds (16)
where the pdf is given in Box 1. The result is given in Box 2. We
obtain the second moment of s, <Sz>, by substituting s® for s in (16),
the result being similar in form to the expression for the mean. The
result is included in Box 2. Finally, we can solve for an arbitrary q-
quantile by setting F(s)=q and solvirig for s, being careful to assure
the result is appropriate to the interval of s used. The results for g-
quantiles is also in vBox u2

Case (b): ﬁ 2 T’—:

This case is less interesting and very similar, hence is not

discussed at length here. I give the pdf and cdf for reference in Box

3 as an appendix.



BOX 1
Ve Us
Case (a): Vi T W
s<s,
f(s) =
| S,£8<S
2 2 n‘s’
f(s) = qs)[“H VL(I i/ 2) )]
= 2 _,211n§) P2=95%
f(s) = Qs)[vi, - v In@/2))
(s s,<s<s,
f(s)=qs)[ In(1/2) “L]
f(S)= §,s8
1 (1Y In{/2)
) =-ZRRA, I\ s)(ln(s) )
Rs) = O<s<s,
Rs) = 2HR{“ mcvz)) 2quL+vL(,n(1,2))
s,<s<s,
[y (ing) Y Va-VE
F(s)_[VH_(In(VZ)) :”:zRuRv ]'i" F(sg) 82 SSSSS
Vil co(In@ Y o InE) Y
Hs) = 2RR{ L[" +VL}-VH(|,1(1,2)) UL(In(VZ)) }+F(s“)
s,<s<s,
Hs) = 1 s,ss<1




BOX 2

(s)= 4R1 = {5 xi)l:via'1 + 2au2~:| -3 xz)[v’Ha" + 2u2Ha:| ~TEx 3)[via" + 2u2La]

+T( x ‘)[v:a'1 + 2uta] + 2qua[x;”ze ‘_x'"e ':l + 2ui{x'”2 P_x"%e ']}

1 3 e —X‘

v
where a=||n(1/2)|2, X,==-In(s,), n=12,3,4

and the incomplete gamma function is defined as

[(v,at) = a"j;""e"'dr a>0,t>0
1

112
qFluFlv+quL—(q2Hth+2qFl R.u vL) I

Uy H
2
v

5= (3) L

[[Z(u)—(quu+(1-q)uL)]:|‘ ) ™

vl

12
2 2 2
[qﬂunv-uLvL+uHRv-[(qRuFIv—uLvL+uHRv) —uLvH] ]i
2

v

$q= (%) H

(s2) = { expression for (s) with a—2a= 2| nw2) }




Figures 1 and 2 show the pdf and cdf for case (a) for a range of
possible distributions in which the mean and variance of the v
distribution was kept constant, and the u distribution parameters
were varied. The units are arbitrary since only the dimensionless
ratios appear in the distributions. The plots in display how
increasing the mean ( as well as the variance in this case) of the WR,
u, affects the resulting distribution of s. Examination by the reader
will confirm that the general features are intuitive, e.g. large WR
results in low survivability, etc. The most probable values of s can
be read off the peaks in Figure 1. Similarly, the quantiles may be
read directly off the curves in Figure 2.

Figure 3 illustrates that one must take care when estimating
performance based on point estimators of s (such as <SSPS>). In the
figure, I have plotted various estimators of s for two distributions:
one in which the variances of the u and v distributions are held
constant and the means are varied and one in which the means are
held constant and the variances are varied by widening the distance
between upper and lower limits of the v distribution. The three
plots labelled <SSPS>, SSPS(.75 quantile) and SSPS(.90 quantile) are
the former case, the circles represent the latter. All are plotted
against the median SSPS, which we saw above is simply the SSPS of
the medians of u and v. The plot shows that the difference between
the median and mean is particularly significant at low survivabilitieé.
The circles plot the mean SSPS versus the median for a distribution
with constant ratio of <u>/<v> but varying variance of u. The other
two plots show the 75th and 90th percentiles for s, indicating how

different the median is from levels with higher confidence.
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The results above can be applied immediately, simply by
computing the quantities of interest. We give two examples, in
generic form, focusing on WR and CEP in turn.

WR often scales as the cube root of the yield[S], and one
frequently needs to determine the relationhip between yield and
SSPK at a specific confidence level for a particular system. Figure 4
shows SSPK as a function of normalized yield for a hypothetical
system. Here the CEP had mean 1 and limits of £0.2 and the mean
WR was varied from 1 to ‘\3/26= 3.42 with limits of £50%, thus
representing a 40-fold range of yield. Four quantiles are shown, .5,
.75, .90, .95, and .99. Suppose one wants the yield corresponding to
SSPK = 0.9. If the .5 quantile is used, the "p50" plot indicates a yield
of Y=6 is required to produce a median SSPK of .9. If one wants 90%
confidence in 0.9 SSPK, one must use the "p90" curve, finding that a
yield of about 28 is required, a factor of 4 larger. A 40-fold increase
in yield is required for 0.95 confidence.

Generally a smaller CEP provides lower SSPS but requires moré
resources. Figure 5 shows how to pick a CEP that meets a specific
level of confidence. The figure plots SSPK quantiles (0.5, 0.75, 0.90,
0.95, 0.99) versus CEP for a system characterized by <WR> = 1.0
+50%, and <CEP> varying as shown with constant limits of +0.20. For
a median SSPK of 0.9 one sees that CEP is required to be about 0.55.
Again, if 0.90 confidence of 0.90 SSPK is required, then a more
stringent CEP of about 0.28 must be attained.

The point of the above examples is that one can be quantitative
about confidence levels required for SSPK based on estimates of key

system parameters.
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The effect of uncertainty is shown in Figure 6, which plots the
SSPK quantiles 0.5, 0.75, 0.90, 0.95 for constant <WR>=2, <CEP>=1, CEP
range=1+0.20, but with the range of WR varying from 0.4 to 3.8. The
result shows a constant median at 1- (v 2)4=0-94 but with widely
varying quantiles.

Given an analytic form for the distribution of SSPK, one can
calculate measures of how well the model reflects data from monte
carlo or other first principle calculations. Several techniques are
common, such as a chi-square test based on the observation that the
difference between the actual and predicted SSPK values should be
distributed as chi-square [e.g. 6] or examination of q-q plots [7]. We
defer examples of these applications to specific treatments

elsewhere.

3. Pdf and cdf for u uniform and v chi-squared.

Let u be distributed uniformly as in section 2 (eq. 3) but now let

v be distributed as xz. Then if we define the variable & by
n

$’n- 1) S )

§= 2 . n-1 . 2
o with 1=t , then the pdf of & is given by (the X" -
distribution)
e
f )= .
2°M%y) (17) The

parameters O and (n-1) are referred to as the standard deviation

(actual) and the degrees of freedom respectively of the distribution
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and completely specify it. The quantity denoted by capital S,
i()(l-x)2
S= n-1 is the (maximum likelihood, unbiased) estimate of O,

in which each value of xi represents the location of the ith

measurement of a weapon delivery system's impact point. The CEP

is then 1.177410, Here we are interested in the distribution of

g(ug) (11774) c’
1 =4 A el

In this case, equation (5) for F becomes

As)=  [[f.0)f(© dudk

(ut): e*" Ve s (19) Using
£ = u® In(1/ 2)
~ bins , and equation the cdf is
d equati (17) the cdf i

2 Ty In(3)

1 “wgy [uiIn(y -1 ). 2bins
Ks) = n_—'J. R_{o blins' (s'lns')e ds’

2 TG ¥ (20) and

the pdf is then a 1 probability integral

- PUY o
f(s) = 1 (=1 Iblns)j o e do

o o \sins A InE (!
2°'T(%) Ry @))% 1)
2 In(/2)
where P = »ins, vyielding the result

u? InQ) u’1n@)
F) = — 1 — 2] {2, 2]

incomplete gamma functions are defined in Box 2. We can now

(22) where the
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conveniently calculate F(s) and moments of the pdf by numerically
integrating equation (22).

For illustration, we compute some distributions, examine the
nature of the quantiles, and examine the tradeoff between yield and
confidence in a particular SSPK for a hypothetical case.

Figure 7 shows pdfs for 6 illustrative distributions. The pdfs
have 14 degrees of freedom and © = 1, with various values for up
and uy chosen to illustrate low, high, and medium survivability cases.
As in the uniform-uniform case, the modes of these distributions
conform to intuition regarding low and high survivablility cases: for
(WR/CEP) >> 1 the most probable SSPS goes to 0 and for (WR/CEP) <<
1 the most probable SSPS approaches 1. For intermediate cases
(WR/CEP) near 1, the pdfs can be bimodal as in the pdf labelled
"pdf8".

Cumulative distribution functions are shown in Figure 8. These
were obtained by straightforward numerical integration (on a Macll)
of the pdfs in Figure 7. The interval length between evaluation
points of the pdf was reduced until F(1) = 1.00 within about 1%, the
number of points required ranging from 50 to several hundred.
Confidence levels such as medians, 0.9 quantiles, etc., can be read
directly off Figure 8 ( or interpolated from the computed values)
adequately for a 1% tolerance.

Figure 9 compares some of the quantiles to the median for the
illustrative distributions. We also plot for comparison the average,
<SSPS>, and the standard deviation of SSPS. There are large
differences between the median (as well as the average) and high

confidence levels such as the 0.9 quantile. For example, in the case
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in which the median SSPS is about 0.1 ( the average SSPS is about
0.25) the 0.9 quantile is about 0.78. In terms of SSPK, the median
SSPK is about 0.9 the average is about 0.75, and we have a 0.90
confidence that the SSPK is greater than only 0.22. The behavior is
similar to the uniform-uniform case shown in Figure 3.

The relation between yield and SSPK is shown in Figure 10. CEP
is taken to have a 1 distribution with 6 = 1 and 14 degrees of
freedom ( <CEP> = 1.17741). The yield Y = 1 case is assumed to have
WR distributed uniformly between 0.84 and 0.28 (in units of <CEP>).
The effect of increasing yield was incorporated by increasing the
mean WR by a factor Y!/3 for Y = 2, 4, 5.6, 8, 10, 15, 20, 25, and 30
while maintaining a WR range equal to the mean WR (i.e. a 50%
variation). We can use the plots to determine the yield required to
produce a given SSPK with a given confidence level. For example, if
we want to increase the 50% confident SSPK from 0.2 to 0.5 we must
increase the yield by a factor of about 8. To increase the 90%
confident SSPK from 0.05 to 0.5 requires an increase of yield of about

a factor 24.
4. Treating v chi-square and u general.

In some cases, the distribution of u is obtained quasi-empirically.
For example analysis of the effects of an earth penetrator weapon
(EPW) involves propagation of strong shocks and earth motion
through the ground, structural response of very hard targets, and the
effects of various kinds of geology [8]. Numerical modeling of the

deepndency of an EPW on parameters such as depth of burst and
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yield therefore typically result in quasi-empirical distributions from
simulation of the effects of underlying distributions. @ We can
incorporate such quasi-empirical results into the approach described
here fairly easily.

We use equation (19)

Rs)= [ [1.uf € dudg

wE): e ¥cs (19)

now equation (20) becomes simply

_2- W In(%)

Urax
s In(3 ;
1 J -1 n-1 2b|ns
RS = = Is.=ods (s'lns'jblns J -[ duf, @ u
2 T e 23).

this case we can perform the double integration numerically, using

fu For moments such as the

the quasi empirical values for
average, we can insert the appropriate power of s into the s integral

in equation (23) before evaluation.
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BOX 3
Vi U
Case (b): v U
f(s) =
l s<s,
2 2 n§82
f(s)=qs)[”*""t(|n(1/2))] . <s<s
f(s) = Qs)[uf, - uf] S.<s<s
f(s)=(Is)[v2 #zs%)—uf_] s,<s<s,
f(s) = §,58
_ 1 (1YInw2)
) =- TRR. M2 \s (In(s) )
Hs) = 0<s<s,
In(s _In(s) ”2}
Hs) = 2RR{ In(l/2) 2“"*"(n(1/2))
s,<s<s,
| u ffui-uv?
F(S)—[% V_}[zFRR ] s,<s<s,
o YUVa o In) Y of Ings) '"2}
HS)‘znuRv{“H"H* u, In(1/2)) uL(ln(l/Z)) +Rs)
s,<s<s,
Hs) =1 s,ss<1
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Figure 1
PROBABILITY DENSITY FUNCTION FOR SSPS
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CUMULATIVE PROBABILITY
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SSPS ESTIMATOR
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Figure 3

AVERAGES AND QUANTILES
FOR U AND V UNIFORMLY DISTRIBUTED
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Figure 4

EXAMPLE: YIELD AND SSPK
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SSPK QUANTILE
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EXAMPLE: SSPK AND CEP
FOR U AND V UNIFORMLY DISTRIBUTED

;

AN

NN

N

| N

/
A 1/

NIAY LY

S ~_0

4
7

X

/

T —0

0.3

0.4

0.8 0.8 0.7

NORMALIZED <CEP>

0.9

1.0

.50 Quantile

" (median)

0,75 Quantile

<Io.9o Quantile

.95 Quantile

7099 Quantile



SSPK QUANTILE

1.0

0.9

0.8

0.7

08

0.4

03

02

0.1

0.0

Figure 6

EXAMPLE: WR AND SSPK

FORUANDYV UNIFORMLY DISTRIBUTED

ferevransatsaransnronrestssteunananatessanstratrotessuncsseeates crarsanusonascarsoere de i et aseesssnettenesetrnescivraniutsnt raneinncaasnoavasoortesnessssestsaeannana

0.50 Quantile

(medlan)

\0.75 Quantile

_ﬂ

N

.

)

N
\\\ 0.90 Quantile

o

0.95 Qmule\,.'b.m
I

(In units of <cep> = 1)

WR Range: [U(high) - U(low)] ;

4



PROBABILITY DENSITY
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Figure 7

PDFS FOR SSPS
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Figure 9

AVERAGES AND QUANTILES FOR
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SSPK QUANTILE
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Figure 10

EXAMPLE: YIELD AND SSPK
FOR U UNIFORM & V CHI-SQUARE
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